NEW RECORDS OF APHIDS (HEMIPTERA: APHIDOIDEA) AND THEIR HOST-PLANTS FROM NORTHERN CHILE

OLE E. HEIE, JAN PETTERSSON, EDUARDO FUENTES-CONTRERAS AND HERMANN M. NIEMEYER

ABSTRACT

A list of eleven aphid species collected in the "Norte Chico" area in northern Chile is given. *Aphis danielae* Remaudière, *Eucarazzia elegans* (Ferrari) and *Hysteronoea setariae* (Thomas) are new records to Chile. In the collections seven species are agriculturally important pests introduced from the Northern hemisphere and only two are native to South America (*A. danielae* and *Uroleucon macolai* (Blanchard)), in accordance with previous experiences of a poor endemic aphid fauna in the Southern hemisphere. This could be explained by Heie’s hypothesis based on palaeontological data.

INTRODUCTION

The aphid fauna of Chile seems to be very poor relative to areas of the Northern hemisphere of similar size. In particular, for Chile only 133 species have been previously reported in the literature, with 31 native representatives, many of them shared with Argentina (Smith & Cermeli, 1979; Carrillo, 1980; Quednau, 1990; Remaudière et al., 1993-1995; Quednau & Remaudière, 1994; Stary, 1995, Carvalho *et al.*, in press; Fuentes-Contreras *et al.*, unpublished data). This paucity of the Chilean aphid fauna may be the result of large scale biogeographic and palaeontological processes as proposed by Heie (1994a, 1994b), but the lack of basic research on economically unimportant aphid species means that the species richness probably will be found to be larger in the future.

In order to increase the scant available information about Chilean aphids in noncultivated habitats, aphids and their host plants were collected in areas of the "Norte Chico" with special attention to the native flora. The list of aphids given below shows a total of ten aphid species on native plants, three of them being new to Chile. Also, the records of aphid host plant associations with native plant species are given.

MATERIALS AND METHODS

During October 1991 collections of aphids and...
their host plants were carried out at the following locations: site A: near Vicuña, 30°01'S-70°41'W, on October 18, 1991; site B on orange trees in the town of Vicuña, 30°01'S-70°42'W, on October 18, 1991, site C: East of Vicuña, 30°00'S-70°31'W, on October 19, 1991, site D: West of Vicuña, 30°00'S-70°48'W, on October 20, 1991; site E: near Domeyko 28°57'S-70°53'W, on October 21, 1991; site F, near La Serena, 29°51'71°15', on October 21, 1991.

The aphids were collected in 70% ethanol, later preserved by mounting them in Euparal and identified by Ole E. Heie. Samples of host plants were identified by Sebastien Teillier and deposited in the herbarium at Museo Nacional de Historia Natural, Santiago, Chile. Aphid samples are deposited at Zoological Museum at Copenhagen.

RESULTS AND DISCUSSION

List of aphids collected

The species are listed in alphabetical order. An asterisk (*) designates a species new to Chile.

Acyrthosiphon kondoi Shinji: site D (see collection sites above), on *Melilotus albus* Desr. (Fabaceae); site E, 3 alate females on *Caesalpina angulicaulis* Clos (Caesalpinaceae). It lives on many species of Fabaceae (Leguminosae) e.g. *Medicago, Melilotus and Trifolium* spp., and is an occasional pest to these plants in Chile. It is of East Asian origin and now nearly cosmopolitan; in the Neotropical region known from Argentina, Bolivia, Chile and Mexico (Smith & Cermeli, 1979; Remaudière et al., 1991).

* Aphis danielae* Remaudière: site A, on *Lycium stenophyllum* Remy (a large colony) and on a cactus *Echinopsis chilensis* (Colla) Friedr. et Rowl. (colonies on buds). Remaudière (1994) described material collected on *Lycium sp., L. chilensis* and *Schinus polygamus* (probably not a host) in three localities in Argentina. The normal host is probably *Lycium*. The species is rather similar to *Aphis craccivora* Koch, but its processus terminalis is much shorter. In the Neotropical region it is de-scribed from Argentina and now also found in Chile.

Aphis spiraecola Patch, (= *A. citricola* v.d. Goot, of authors as listed in Blackman & Eastop, 1994): site C, on *Calandrinia parviflora* Phil. (Portulacaceae) and *Oenothera picensis* Phil. (Onagraceae). site B, on *Citrus nobilis*; site F, on *Bahia ambrosioides* Lag. (Asteraceae); site E, on *Caesalpina angulicaulis* Clos (Caesalpinaceae). The species is polyphagous. It is widespread in warm climates; in the Neotropical region known from, Argentina, Bolivia, Brazil, Caribbean Islands, Central America, Chile, Colombia, Peru, Surinam and Venezuela (Smith & Cermeli, 1979, as *A. citricola* v.d. Goot).

Breviceoryne brassicae (Linné): site A, on *Hirschfeldia incana* (R. et Pav.) Pers. (Brassicaceae). It lives on many species of Brassicaceae and on *Tropaeolum* (Tropaeolaceae). It is of Palearctic origin, but now cosmopolitan, in the Neotropical region it is known from Argentina, Bolivia, Brazil, Caribbean Islands, Central America, Chile, Colombia, Ecuador, Mexico, Peru, Uruguay and Venezuela (Smith & Cermeli, 1979).

Eucarazzia elegans (Ferrari): site A, on *Phrodus microphyllus* (Miers) Miers (Solanaceae), one alate female. The hosts of this species belong to the Lamiaceae. The chief distinguishing characters are triangular shadows surrounding the ends of the wing veins and strongly swollen siphunculi. It is probably of Mediterranean origin, but now widely distributed in tropical and subtropical regions, in the Neotropical region recorded from Bolivia (Remaudière et al., 1991) and now also Chile.

Hysteroneura setariae (Thomas): site A, on *Spergula* cfr. *speciosa* Trin. et Rupr. (Poaceae). It lives on many grasses. The chief distinguishing characters are the long processus terminalis and the pale cauda. The body color is brown. Widely distributed in warm climates; in the Neotropical region: Argentina, Bolivia, Brazil, Caribbean Islands, Colombia, Honduras, Peru, Surinam and Venezuela (Smith & Cermeli, 1979) and now also Chile.

* Lipaphis erysimi* (Kaltenbach): site A, on *Hirschfeldia incana* (R. et Pav.) Pers. (Brassicaceae). The species lives on many species
of Brassicaceae. It is cosmopolitan, outside Europe usually recorded as *L. pseudobrassicae* (Davis, 1914); in the Neotropical region known from Argentina, Bolivia, Brazil, Chile, Caribbean Islands, Colombia, Honduras, Mexico, Peru, Surinam and Venezuela (Smith & Cermeli, 1979).

Macrocephus euphorbiae (Thomas): site C, on *Alstroemeria* cfr. *leporina* Bayer et Grau (Amaryllidaceae) and *Veronica anagallis-aquatica* L. (Scrophulariaceae); site D, on *Sonchus asper* (L.) J. Hill (Asteraceae) and *Pluchea absinthioides* (H. et Arn.) H. Rob. et Cuatrec. It is polyphagous and nearly exclusively anholocyclic. It is cosmopolitan; in the Neotropical region known from Argentina, Bolivia, Brazil, Caribbean Islands, Chile, Colombia, Ecuador, Peru and Venezuela (Smith & Cermeli, 1979).

Metopolophium dirhodum (Walker): site C, on *Chaetotropis cfr. elongata* (H.B.K.) Björk (Poaceae). It alternates between *Rosa* and grasses in the Northern hemisphere, but seems to be anholocyclic in Chile. Further native host-plant records for *M. dirhodum* and other cereal aphids are given by Vargas (1981), Quiroz et al. (1986) and Oehrens (1990). In the Neotropical region it has been reported from Argentina, Bolivia, Brazil, Chile, Mexico and Uruguay (Smith & Cermeli, 1979 as *Acyrtosiphum dirhodum* (Walker); Remaudière et al., 1991).

Myzus persicae (Sulzer): site A, on *Hirschfeldia incana* (R. et Pav.) Pers. (Brassicaceae). It is polyphagous and may be host alternating between *Prunus* spp. (mainly *P. persica* L.) and a large number of plants, but predominantly anholocyclic on the latter. In Chile, Zúñiga (1968) cited *P. persica* and *P. amygdalus* Batsch. as overwintering hosts and gives further records of secondary host-plants. Cosmopolitan and widespread all over the Neotropical region (Smith & Cermeli, 1979; Nieto Nafria et al., 1994).

Uroleucon macolai (Blanchard): site A, on *Baccharis salicifolia* (R. et Pav.) Pers. (Asteraceae), described as *Macrocephus macolai* by Blanchard (1932) and redescribed by Remaudière et al., (1991), who placed it in the genus *Uroleucon*. The samples deviate from the latter description, probably because the specimens are rather small (about 2.0 mm or less; in material from Bolivia 2.6-3.5 mm); the processus terminalis is shorter (4.3-4.8 x the basal part of antennal segments VI, against 5.4-6.4 x), most specimens have fewer than 5 hairs on tarsal segment I, and the number of caudal hairs is only 6-8 (against 9-14). The species has been found only on *Baccharis salicifolia*, *B. polifolia* and *B. sp* in Argentina, Chile and Bolivia (Nieto Nafria et al., 1994).

ZOOGEOGRAPHICAL NOTES

From the information in the literature (Smith & Cermeli, 1979; Fuentes-Contreras et al., unpublished data) and the present aphid survey it has been confirmed that a large proportion of the aphid species in Chile, as in Bolivia (Remaudière et al., 1991) and Argentina (Nieto Nafria et al., 1994), have been introduced from Europe or North America. Among the eleven species collected in natural habitats and emphasising native plant species, the following seven are agriculturally relevant species that have spread nearly all over the world from the Northern hemisphere: *Acyrtosiphon kondoi*, *Aphis spiraeacola*, *Brevicoryne brassicae*, *Lipaphis erysimi*, *Macrocephus euphorbiae*, *Metopolophium dirhodum* and *Myzus persicae*. An eighth species, *Hysteroneura setariae*, is distributed all over the tropics and part of the subtropics, being new to Chile. Furthermore, *Eucarazzia elegans* is of Mediterranean origin and is also new to Chile and previously recorded from Bolivia (Remaudière et al., 1991). Finally, in this collection only two species are endemic to South America, *Aphis danielae* and *Uroleucon macolai*, both originally described from Argentina.

The reason for the poor representation of species endemic to South America, even in natural habitats, has been given by Heie (1994a, 1994b). An adaptive radiation of Aphididae, the family richest in species today, took place on the Northern hemisphere rather late, after the middle of the Tertiary (probably in the Miocene or later), when the world climate became colder and herbaceous angiosperms formed plant societies covering large areas. Species of this family, which were less specialised than most other aphids at that time, developed a new kind of host alternation, very different from that found in Adelgidae, Pemphigidae, Anoeciidae and Hormaphididae, which was based
mostly on woody hosts, and became adapted to large seasonal oscillations, both climatic and vegetational. In their dispersal southwards, the tropics acted as a barrier except for those polyphagous species able to overwinter anholocyclically. At a biogeographical level, plant diversity in the tropics represents a problem to an alate monophagous aphid trying to find a new host plant after leaving the plant on which it was born, a mechanism proposed by Dixon et al., (1987) to explain the low species richness of aphids in the tropics.

Most Aphididae genera have an Holarctic origin, e.g. also *Aphis* and *Uroleucon*, while genera evolved in the Southern hemisphere belong to families supposed to have been rich in species during the first half of the Tertiary on the basis of available palaeontological data, primarily Drepanosiphidae. In fact, from the 30 native species that are described from Chile, or described from Argentina and subsequently reported as present in Chile, the only two native genera reported to date belong to Drepanosiphidae: *Neuquenaphis* Blanchard (12 species, Quednau & Remaudière, 1994) and *Neosensoriaphis* Quednau (1 species, Blackman & Eastop, 1994), but they represent almost one half of the native species described to date. Other Drepanosiphidae are two species of *Neophyllaphis* Takahashi (Blackman & Eastop, 1994) and *Thripsaphis uncinae* Quednau (Quednau, 1990) adding up to 16 species of this family.

On the other hand, Aphididae is not represented by any native genus and by 15 native species, most of them belonging to the genus *Uroleucon* Mordvilko (9 species, Carvalho et al., in press; Carriilo & Mundaca, 1995), which also has many species in Africa, but few representatives in South America compared with the Northern hemisphere where it has its origin.

The species richness in Chile and in other South American countries is probably much larger than known today, because basic research in non-agricultural areas is lacking. However, this factor may not change the global pattern of aphid diversity between hemispheres. For instance, Dixon et al., (1987) model predicts to Chile more aphids than the species described to date, but this expected diversity is considerably less than the observed mean diversity for countries of the Northern hemisphere. In the meanwhile, further efforts should be done to increase the knowledge of native aphid diversity. Both *Neuquenaphis* and *Uroleucon*, the two most species-rich genera in Chile and Argentina, continue to yield new species (e.g. Quednau & Remaudière, 1994; Delfino, 1994; Carvalho et al., in press).

ACKNOWLEDGEMENTS

We thank Sebastián Teillier for identification of host plant species and to S. Langemark of the Zoological Museum of Copenhagen for mounting the aphids. Financial support of International Program in Chemical Sciences (IPICS) and the Department of Research Cooperation (SAREC, Sweden) is gratefully acknowledged. Eduardo Fuentes-Contreras wishes to acknowledge a Doctoral Fellowship from CONICYT-Chile.

LITERATURE CITED

OEHRENS, M.A. 1990. Interacciones entre los fílidos del trigo y sus enemigos biológicos en un cultivo de trigo y en gramíneas.
Heie et al.: New records of aphids and their host-plants from Chile

